import tensorflow as tf from tensorflow.keras import layers, optimizers, datasets, Sequential import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' tf.random.set_seed(2345)
conv_layers = [
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]
def preprocess(x, y): x = 2*tf.cast(x, dtype=tf.float32) / 255.-1 y = tf.cast(y, dtype=tf.int32) return x,y
(x,y), (x_test, y_test) = datasets.cifar10.load_data()
y = tf.squeeze(y, axis=1) y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x,y)) train_db = train_db.shuffle(1000).map(preprocess).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)) test_db = test_db.map(preprocess).batch(64)
sample = next(iter(train_db)) print('sample:', sample[0].shape, sample[1].shape, tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
def main():
conv_net = Sequential(conv_layers) fc_net = Sequential([ layers.Dense(256, activation=tf.nn.relu), layers.Dense(128, activation=tf.nn.relu), layers.Dense(10, activation=None), ]) conv_net.build(input_shape=[None, 32, 32, 3]) fc_net.build(input_shape=[None, 512]) conv_net.summary() fc_net.summary() optimizer = optimizers.Adam(lr=1e-4)
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(50):
for step, (x,y) in enumerate(train_db):
with tf.GradientTape() as tape: out = conv_net(x) out = tf.reshape(out, [-1, 512]) logits = fc_net(out) y_onehot = tf.one_hot(y, depth=10) loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True) loss = tf.reduce_mean(loss) grads = tape.gradient(loss, variables) optimizer.apply_gradients(zip(grads, variables))
if step %100 == 0: print(epoch, step, 'loss:', float(loss))
total_num = 0 total_correct = 0 for x,y in test_db:
out = conv_net(x) out = tf.reshape(out, [-1, 512]) logits = fc_net(out) prob = tf.nn.softmax(logits, axis=1) pred = tf.argmax(prob, axis=1) pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32) correct = tf.reduce_sum(correct)
total_num += x.shape[0] total_correct += int(correct)
acc = total_correct / total_num print(epoch, 'acc:', acc)
if __name__ == '__main__': main()
|